A long exact sequence for symplectic Floer cohomology
نویسندگان
چکیده
منابع مشابه
A long exact sequence for symplectic Floer cohomology
Let (M, ω, α) be a compact symplectic manifold with contact type boundary: α is a contact one-form on ∂M which satisfies dα = ω|∂M and makes ∂M convex. Assume in addition that [ω, α] ∈ H(M,∂M ;R) is zero, so that α can be extended to a one-form θ on M satisfying dθ = ω. After fixing such a θ once and for all, one can talk about exact Lagrangian submanifolds in M . The Floer cohomology of two su...
متن کاملQuasimap Floer Cohomology for Varying Symplectic Quotients
We show that quasimap Floer cohomology for varying symplectic quotients resolves several puzzles regarding displaceability of toric moment fibers. For example, we (i) present a compact Hamiltonian torus action containing an open subset of non-displaceable orbits and a codimension four singular set, partly answering a question of McDuff, and (ii) determine displaceability for most of the moment ...
متن کاملLagrangian Embeddings, Maslov Indexes and Integer Graded Symplectic Floer Cohomology
We define an integer graded symplectic Floer cohomology and a spectral sequence which are new invariants for monotone Lagrangian sub-manifolds and exact isotopies. Such an integer graded Floer cohomology is an integral lifting of the usual Floer-Oh cohomology with ZΣ(L) grading. As one of applications of the spectral sequence, we offer an affirmative answer to an Audin’s question for oriented, ...
متن کاملDirections for the Long Exact Cohomology Sequence in Moore Categories
A new method for realizing the first and second order cohomology groups of an internal abelian group in a Barr-exact category was introduced in [6] and [10]. The main role, in each level, is played by a direction functor. This approach can be generalized to any level n and produces a long exact cohomology sequence. By applying this method to Moore categories we show that they represent a good c...
متن کاملNovikov-symplectic Cohomology and Exact Lagrangian Embeddings
We prove that if N is a closed simply connected manifold and j : L →֒ T ∗N is an exact Lagrangian embedding, then H2(N) → H2(L) is injective and the image of π2(L) → π2(N) has finite index. Viterbo proved that there is a transfer map on free loopspaces H∗(L0N) → H∗(L0L) which commutes under the inclusion of constant loops with the ordinary transfer map H∗(N) → H∗(L). This commutative diagram sti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology
سال: 2003
ISSN: 0040-9383
DOI: 10.1016/s0040-9383(02)00028-9